Biological Nitrogen Removal Database

A manually curated data resource for microbial nitrogen removal


Detailed information

Microorganism

Nitratiruptor sp. (strain SB155-2)

Taxonomy

  • Phylum : Proteobacteria
  • Class : Epsilonproteobacteria
  • Order : Epsilonproteobacteria
  • Family : unclassified Nitratiruptor
  • Genus : Nitratiruptor

Isolation Source

Deep sea vent

Enzyme Name

periplasmic nitrate reductase, small subunit 

  • Encoding Gene:NapB
  • DNA Size:1877931 bp
  • Nucleotide FASTA sequence: Link

  • UniProt I.D: A6Q601

Protein Information

  • Pro_GenBank I.D: BAF70910.1

  • Length:193 aa
  • Protein FASTA_sequence: Link

Information about Article

  • Reference:Nakagawa et al., 2005
  • Title:Deep-sea vent epsilon-proteobacterial genomes provide insights into emergence of pathogens
  • Pubmed ID:16156735.0
  • Pubmed link: Link

  • Full research link: Link

  • Abstract:Deep-sea vents are the light-independent, highly productive ecosystems driven primarily by chemolithoautotrophic microorganisms, in particular by ε-Proteobacteria phylogenetically related to important pathogens. We analyzed genomes of two deep-sea vent ε-Proteobacteria strains, Sulfurovum sp. NBC37-1 and Nitratiruptor sp. SB155-2, which provide insights not only into their unusual niche on the seafloor, but also into the origins of virulence in their pathogenic relatives, Helicobacter and Campylobacter species. The deep-sea vent ε-proteobacterial genomes encode for multiple systems for respiration, sensing and responding to environment, and detoxifying heavy metals, reflecting their adaptation to the deep-sea vent environment. Although they are nonpathogenic, both deep-sea vent ε-Proteobacteria share many virulence genes with pathogenic ε-Proteobacteria, including genes for virulence factor MviN, hemolysin, invasion antigen CiaB, and the N-linked glycosylation gene cluster. In addition, some virulence determinants (such as the H2-uptake hydrogenase) and genomic plasticity of the pathogenic descendants appear to have roots in deep-sea vent ε-Proteobacteria. These provide ecological advantages for hydrothermal vent ε-Proteobacteria who thrive in their deep-sea habitat and are essential for both the efficient colonization and persistent infections of their pathogenic relatives. Our comparative genomic analysis suggests that there are previously unrecognized evolutionary links between important human/animal pathogens and their nonpathogenic, symbiotic, chemolithoautotrophic deep-sea relatives.