Biological Nitrogen Removal Database

A manually curated data resource for microbial nitrogen removal


Detailed information

Microorganism

Uncultured bacterium

Taxonomy

  • Phylum : nan
  • Class : nan
  • Order : nan
  • Family : nan
  • Genus : nan

Isolation Source

tea soil

Enzyme Name

nitrous oxide reductase

  • Encoding Gene:NosZ
  • DNA Size:454 bp
  • Nucleotide FASTA sequence: Link

  • UniProt I.D: nan

Protein Information

  • Pro_GenBank I.D: AHU88324.1

  • Length:151 aa
  • Protein FASTA_sequence: Link

Information about Article

  • Reference:Huang et al., 2015
  • Title:Acidophilic Denitrifiers Dominate the N2O Production in a 100-year-old Tea Orchard Soil
  • Pubmed ID:25273518
  • Pubmed link: Link

  • Full research link: Link

  • Abstract:Aerobic denitrification is the main process for high N2O production in acid tea field soil. However, the biological mechanisms for the high emission are not fully understood. In this study, we examined N2O emission and denitrifier communities in 100-year-old tea soils with four pH levels (3.71, 5.11, 6.19, and 7.41) and four nitrate concentration (0, 50, 200, and 1000 mg kg(-1) of NO3 (-)-N) addition. Results showed the highest N2O emission (10.1 mg kg(-1) over 21 days) from the soil at pH 3.71 with 1000 mg kg(-1) NO3 (-) addition. The N2O reduction and denitrification enzyme activity in the acid soils (pH <7.0) were significantly higher than that of soils at pH 7.41. Moreover, TRF 78 of nirS and TRF 187 of nosZ dominated in soils of pH 3.71, suggesting an important role of acidophilic denitrifiers in N2O production and reduction. CCA analysis also showed a negative correlation between the dominant denitrifier ecotypes (nirS TRF 78, nosZ TRF 187) and soil pH. The representative sequences were identical to those of cultivated denitrifiers from acidic soils via phylogenetic tree analysis. Our results showed that the acidophilic denitrifier adaptation to the acid environment results in high N2O emission in this highly acidic tea soil.