Microorganism |
---|
Photobacterium ganghwense strain NNA4 |
Taxonomy |
---|
|
Electron Acceptor |
---|
NO3-,NO2- |
Electron Donor |
---|
Sodium succinate |
Information about Article |
---|
Reference:Liu et al., 2019 Title:Photobacterium Sp. NNA4, an Efficient Hydroxylamine-Transforming Heterotrophic Nitrifier/Aerobic Denitrifier Pubmed ID:30709706 Pubmed link:Link Full research link:Link Abstract: An efficient heterotrophic nitrifying/aerobic denitrifying strain, Photobacterium sp. NNA4 was isolated from a recirculating aquaculture system (RAS). NNA4 was capable of utilizing ammonia, nitrate or nitrite as sole N-source with maximal removal rates of 12.5 mg/L/h for NH4+N, 16.4 mg/L/h for NO3--N, and 4.5 mg/L/h for NO2--N, respectively. Optimal nitrification conditions were: sodium succinate as C-source, 30-37°C, NaCl 1-4%, pH 7.0-8.0, dissolved oxygen 5.89 mg/L, C/N > 10. Gas chromatography/mass spectrometry and gas chromatography/isotope ratio mass spectrometry analyses showed that N2 and N2O were aerobic denitrification products of nitrite and nitrate. NNA4 could tolerate high concentration of hydroxylamine and displayed efficient hydroxylamine-transforming capability. Hydroxylamine oxidoreductase activity using potassium ferricyanide as electron acceptor was 0.042 U. Results revealed that strain NNA4 could oxidize NH2OH directly to N2O at aerobic conditions. In view of its high removal ability of inorganic nitrogen pollutants and broad salinity tolerance range, NNA4 has great potential in denitrification treatment of types of wastewater with either low salinity (e.g., municipal facilities) or high salinity (e.g., aquaculture, seafood processing). |