Influent:nan
Anammox system:nan
Anammox reactor:Anaerobic biological filtrated (ABF) reactor
Medium:Nonwoven fabric carriers
Culture taken from:Sewage sludge
Microorganism cultured:nan
Respiration:Anaerobic
Electron donor:Ammonium sulfate ((NH4)2SO4)
Electron acceptor:Sodium Nitrite (NaNO2)
PH:7.2
Maximum sludge concentration:4
HRT:0.6–3 h
NH4–N Influent conc(mg/L):250
NO2–N Influent conc(mg/L):250
SO4–S Influent conc(mg/L):nan
NH4–N Removal efficiency (%):nan
NO2–N Removal efficiency (%):nan
SO4-S Removal efficiency (%):nan
NLR kg-N/m3/d:2.3–2.9
NRR kg-N/m3/d:3.3
Major findings:Study clearly demonstrated that an appropriate nitrite concentration in the influent was below 280 mg/l and that a shorter HRT could yield high nitrogen conversion rates even at moderately low temperatures.
Authors:Isaka et al 2007
Title:High nitrogen removal performance at moderately low temperature utilizing anaerobic ammonium oxidation reactions
Pubmed link:Link
Full research link:Link
Abstract:High rates of nitrogen removal from wastewater have been reported using anammox bacteria at temperatures around 37 degrees C, but not at moderately low temperatures. In this study, nitrogen removal performance of an anaerobic biological filtrated (ABF) reactor, filled with porous polyester nonwoven fabric carriers as a fixed bed for anammox bacteria, was tested at 37 degrees C and at moderately low temperature (20-22 degrees C). To attain higher nitrogen removal performance, effects of influent nitrogen concentrations and hydraulic retention time (HRT) on nitrogen removal rates were investigated. Nitrogen removal rate increased with influent ammonium and nitrite concentrations, resulting in a removal rate of 3.3 kg-N/m(3)/d on day 32 for an HRT of 180 min at 37 degrees C. However, influent nitrite concentrations greater than 280 mg/l inhibited anammox activity. Therefore, the influent nitrite concentration was adjusted to be below 280 mg/l, and high-loading tests were performed for a shorter HRT. As a result, a nitrogen conversion rate of 11.5 kg-N/m(3)/d was achieved. Moreover, to evaluate long-term anammox activity at moderately low temperatures, ABF reactors were operated for 446 d. Anammox activity could be maintained at 20-22 degrees C, and stable nitrogen removal performance was observed. Furthermore, high nitrogen conversion rate of 8.1 kg-N/m(3)/d was attained. These results clearly show that an appropriate nitrite concentration in the influent and a shorter HRT resulted in high nitrogen conversion rates. The nitrogen removal performance we obtained at moderately low temperatures will open the door for application of anammox processes to many types of industrial wastewater treatment.