Biological Nitrogen Removal Database

A manually curated data resource for microbial nitrogen removal


DAMO


Experimental setup


Influent:Real wastewater

Comammox System:Sequential batch reactor coupling anammox and n-DAMO

reactor:Sequential batch reactor (SBR)

Medium:Suspended-sludge

Culture taken from:Enriched n-DAMO and anammox culture

Microorganism cultured:n-DAMO archaea and n-DAMO bacteria

Respiration:Anaerobic

Electron donor:Methane

Electron acceptor:Nitrite

PH:7.3–7.6

Temperature:Room temperature

HRT:nan

NH4–N Influent conc(mg/L):nan

NO2–N Influent conc(mg/L):nan

NO3–N Influent conc(mg/L):nan


Experimental Information


NH4–N Effluent (mg N/L):nan

NO2–N Effluent (mg N/L):nan

NO3-N Effluent (mg N/L):nan

NH4–N removal rate mg/L/d:40

NO2–N removal rate mg/L/d:nan

NO3-N removal rate mg/L/d:40

TN Removal rate (mg N/L/d):nan


Information about Article


Authors:Haroon et al., 2013

Title:Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage

Pubmed link:None

Full research link:Link

Abstract:Anaerobic oxidation of methane (AOM) is critical for controlling the flux of methane from anoxic environments. AOM coupled to iron1, manganese1 and sulphate2 reduction have been demonstrated in consortia containing anaerobic methanotrophic (ANME) archaea. More recently it has been shown that the bacterium Candidatus ‘Methylomirabilis oxyfera’ can couple AOM to nitrite reduction through an intra-aerobic methane oxidation pathway3. Bioreactors capable of AOM coupled to denitrification have resulted in the enrichment of ‘M. oxyfera’ and a novel ANME lineage, ANME-2d4,5. However, as ‘M. oxyfera’ can independently couple AOM to denitrification, the role of ANME-2d in the process is unresolved. Here, a bioreactor fed with nitrate, ammonium and methane was dominated by a single ANME-2d population performing nitrate-driven AOM. Metagenomic, single-cell genomic and metatranscriptomic analyses combined with bioreactor performance and 13C- and 15N-labelling experiments show that ANME-2d is capable of independent AOM through reverse methanogenesis using nitrate as the terminal electron acceptor. Comparative analyses reveal that the genes for nitrate reduction were transferred laterally from a bacterial donor, suggesting selection for this novel process within ANME-2d. Nitrite produced by ANME-2d is reduced to dinitrogen gas through a syntrophic relationship with an anaerobic ammonium-oxidizing bacterium, effectively outcompeting ‘M. oxyfera’ in the system. We propose the name Candidatus ‘Methanoperedens nitroreducens’ for the ANME-2d population and the family Candidatus ‘Methanoperedenaceae’ for the ANME-2d lineage. We predict that ‘M. nitroreducens’ and other members of the ‘Methanoperedenaceae’ have an important role in linking the global carbon and nitrogen cycles in anoxic environments.