Biological Nitrogen Removal Database

A manually curated data resource for microbial nitrogen removal


DAMO


Experimental setup


Influent:Real wastewater

Comammox System:MBfR coupling anammox and n-DAMO

reactor:MBfR (biofilm)

Medium:Biofilm-suspended-growth 

Culture taken from:Freshwater sediment

Microorganism cultured:n-DAMO archaea and n-DAMO bacteria

Respiration:Anaerobic

Electron donor:Methane

Electron acceptor:Nitrite

PH:7.0–8.1

Temperature:35°C

HRT:2-3 h

NH4–N Influent conc(mg/L):nan

NO2–N Influent conc(mg/L):nan

NO3–N Influent conc(mg/L):nan


Experimental Information


NH4–N Effluent (mg N/L):nan

NO2–N Effluent (mg N/L):nan

NO3-N Effluent (mg N/L):nan

NH4–N removal rate mg/L/d:28

NO2–N removal rate mg/L/d:nan

NO3-N removal rate mg/L/d:78

TN Removal rate (mg N/L/d):nan


Information about Article


Authors:Siegrist et al., 2008

Title:Anammox brings WWTP closer to energy autarky due to increased biogas production and reduced aeration energy for N-removal

Pubmed link:None

Full research link:Link

Abstract:Fifty years ago when only BOD was removed at municipal WWTPs primary clarifiers were designed with 2-3 hours hydraulic retention time (HRT). This changed with the introduction of nitrogen removal in activated sludge treatment that needed more BOD for denitrification. The HRT of primary clarification was reduced to less than one hour for dry weather flow with the consequence that secondary sludge had to be separately thickened and biogas production was reduced. Only recently the ammonia rich digester liquid (15-20% of the inlet ammonia load) could be treated with the very economic autotrophic nitritation/anammox process requiring half of the aeration energy and no organic carbon source compared to nitrification and heterotrophic denitrification. With the introduction of this new innovative digester liquid treatment the situation reverts, allowing us to increase HRT of the primary clarifier to improve biogas production and reduce aeration energy for BOD removal and nitrification at similar overall N-removal.