Influent:Real wastewater
Comammox System:Sequential batch reactor coupling anammox and n-DAMO
reactor:Sequential batch reactor (SBR)
Medium:Suspended-sludge
Culture taken from:Sludge from Full-scale anammox reacto
Microorganism cultured:n-DAMO archaea and n-DAMO bacteria
Respiration:Anaerobic
Electron donor:Methane
Electron acceptor:Nitrite
PH:7.2
Temperature:Room temperature
HRT:nan
NH4–N Influent conc(mg/L):nan
NO2–N Influent conc(mg/L):nan
NO3–N Influent conc(mg/L):nan
NH4–N Effluent (mg N/L):nan
NO2–N Effluent (mg N/L):nan
NO3-N Effluent (mg N/L):nan
NH4–N removal rate mg/L/d:117.6
NO2–N removal rate mg/L/d:175.0
NO3-N removal rate mg/L/d:nan
TN Removal rate (mg N/L/d):nan
Authors:Strous et al., 1999
Title:Missing lithotroph identified as new planctomycete
Pubmed link:None
Full research link:Link
Abstract:With the increased use of chemical fertilizers in agriculture, many densely populated countries face environmental problems associated with high ammonia emissions. The process of anaerobic ammonia oxidation ('anammox') is one of the most innovative technological advances in the removal of ammonia nitrogen from waste water. This new process combines ammonia and nitrite directly into dinitrogen gas. Until now, bacteria capable of anaerobically oxidizing ammonia had never been found and were known as "lithotrophs missing from nature". Here we report the discovery of this missing lithotroph and its identification as a new, autotrophic member of the order Planctomycetales, one of the major distinct divisions of the Bacteria. The new planctomycete grows extremely slowly, dividing only once every two weeks. At present, it cannot be cultivated by conventional microbiological techniques. The identification of this bacterium as the one responsible for anaerobic oxidation of ammonia makes an important contribution to the problem of unculturability.